
Building Concise Logical Patterns by Constraining Tsetlin Machine Clause Size

Appendix

A Tsetlin Machine

Action 1 Action 2

Penatly Reward

Figure 1: A two-action Tsetlin Automaton with 2N states.

Input

 

 

Type I feedback Type I feedback

include exclude include exclude

0 1 N 0 1 2N 0 1 N 0 1 2N

TA

tra
ns

itio
n

Step 1

Step 2

Figure 2: TM learning dynamics for an XOR-gate training sample,
with input (x1 = 0, x2 = 1) and output target y = 1.

Structure. A TM in its simplest form takes a feature
vector x = [x1, x2, . . . , xo] ∈ {0, 1}o of o proposi-
tional values as input and assigns the vector a class ŷ ∈
{0, 1}. To minimize classification error, the TM pro-
duces n self-contained patterns. In brief, the input vec-
tor x provides the literal set L = {l1, l2, . . . , l2o} =
{x1, x2, . . . , xo,¬x1,¬x2, . . . ,¬xo}, consisting of the input
features and their negations. By selecting subsets Lj ⊆ L
of the literals, the TM can build arbitrarily complex patterns,

ANDing the selected literals to form conjunctive clauses:

Cj(x) =
∧

lk∈Lj

lk. (1)

Above, j ∈ {1, 2, . . . , n} refers to a particular clause Cj and
k ∈ {1, 2, . . . , 2o} refers to a particular literal lk. As an ex-
ample, the clause Cj(x) = x1 ∧ ¬x2 consists of the literals
Lj = {x1,¬x2} and evaluates to 1 when x1 = 1 and x2 = 0.

The TM assigns one TA per literal lk per clause Cj to build
the clauses. The TA assigned to literal lk of clause Cj decides
whether lk is Excluded or Included in Cj . Figure 1 depicts a
two-action TA with 2N states. For states 1 to N , the TA
performs action Exclude (Action 1), while for states N + 1
to 2N it performs action Include (Action 2). As feedback to
the action performed, the environment responds with either a
Reward or a Penalty. If the TA receives a Reward, it moves
deeper into the side of the action. If it receives a Penalty, it
moves towards the middle and eventually switches action.

With n clauses and 2o literals, we have n × 2o TAs. We
organize the states of these in a n × 2o matrix A = [ajk] ∈
{1, 2, . . . , 2N}n×2o. We will use the function g(·) to map
the automaton state ajk to Action 0 (Exclude) for states 1 to
N and to Action 1 (Include) for states N +1 to 2N : g(ajk) =
ajk > N .

We can connect the states ajk of the TAs assigned to clause
Cj with its composition as follows:

Cj(x) =
∧

lk∈Lj

lk =

2o∧
k=1

[
g(ajk)⇒ lk

]
. (2)

Here, lk is one of the literals and ajk is the state of its TA
in clause Cj . The logical imply operator ⇒ implements the
Exclude/Include action. That is, the imply operator is always
1 if g(ajk) = 0 (Exclude), while if g(ajk) = 1 (Include) the
truth value is decided by the truth value of the literal.

Classification. Classification is performed as a majority
vote. The clause outputs are combined into a classification
decision through summation and thresholding using the unit
step function u(v) = 1 if v ≥ 0 else 0:

ŷ = u
(∑n/2

j=1 C
+
j (X)−

∑n/2
j=1 C

−
j (X)

)
. (3)



As an example, consider the input vector x = [0, 1] in the
lower part of Figure 2. The figure depicts two clauses of pos-
itive polarity, C1(x) = x1∧¬x2 and C3(x) = ¬x1∧¬x2 (the
negative polarity clauses are not shown). Both of the clauses
evaluate to zero, leading to class prediction ŷ = 0.

Value of the clause Ci
j(X) 1 0

Value of the literal xk/¬xk 1 0 1 0

TA: Include
Literal

P (Reward) s−1
s NA 0 0

P (Inaction) 1
s NA s−1

s
s−1
s

P (Penalty) 0 NA 1
s

1
s

TA: Exclude
Literal

P (Reward) 0 1
s

1
s

1
s

P (Inaction) 1
s

s−1
s

s−1
s

s−1
s

P (Penalty) s−1
s 0 0 0

Table 1: Type I Feedback for vanilla TM — Feedback upon receiv-
ing a sample with label y = 1, for a single TA to decide whether to
Include or Exclude a given literal xk/¬xk into Ci

j . NA means not
applicable.

Value of the clause Ci
j(X) 1 0

Value of the literal xk/¬xk 1 0 1 0

TA: Include
Literal

P (Reward) 0 NA 0 0
P (Inaction) 1.0 NA 1.0 1.0
P (Penalty) 0 NA 0 0

TA: Exclude
Literal

P (Reward) 0 0 0 0
P (Inaction) 1.0 0 1.0 1.0
P (Penalty) 0 1.0 0 0

Table 2: Type II Feedback — Feedback upon receiving a sample
with label y = 0, for a single TA to decide whether to Include or
Exclude a given literal xk/¬xk into Ci

j . NA means not applicable.

Learning. The upper part of Figure 2 illustrates learning.
A TM learns online, processing one training example (x, y)
at a time. Based on (x, y), the TM rewards and penalizes its
TAs, which amounts to incrementing and decrementing their
states. There are two kinds of feedback: Type I Feedback
produces frequent patterns and Type II Feedback increases
the discrimination power of the patterns.

Type I feedback is given stochastically to clauses with
positive polarity when y = 1 and to clauses with neg-
ative polarity when y = 0. Conversely, Type II Feed-
back is given stochastically to clauses with positive polar-
ity when y = 0 and to clauses with negative polarity when
y = 1. The probability of a clause being updated is based
on the vote sum v: v =

∑n−1
j=1,3,...

∧2o
k=1

[
g(ajk)⇒ lk

]
−∑n

j=2,4,...

∧2o
k=1

[
g(ajk)⇒ lk

]
. The voting error is calcu-

lated as:

ϵ =

{
T − v y = 1,

T + v y = 0.
(4)

Here, T is a user-configurable voting margin yielding an en-
semble effect. The probability of updating each clause is
P (Feedback) = ϵ

2T .

After random sampling from P (Feedback) has decided
which clauses to update, the following TA state updates can
be formulated as matrix additions, subdividing Type I Feed-
back into feedback Type Ia and Type Ib:

A∗
t+1 = At + F II + F Ia − F Ib. (5)

Here, At = [ajk] ∈ {1, 2, . . . , 2N}n×2o contains the states
of the TAs at time step t and A∗

t+1 contains the updated
state for time step t + 1 (before clipping). The matrices
F Ia ∈ {0, 1}n×2o and F Ib ∈ {0, 1}n×2o contain Type I
Feedback. A zero-element means no feedback and a one-
element means feedback. As shown in Table 1, two rules
govern Type I feedback:

• Type Ia Feedback is given with probability s−1
s when-

ever both clause and literal are 1-valued.1 It penalizes
Exclude actions and rewards Include actions. The pur-
pose is to remember and refine the patterns manifested
in the current input x. This is achieved by increasing
selected TA states. The user-configurable parameter s
controls pattern frequency, i.e., a higher s produces less
frequent patterns.

• Type Ib Feedback is given with probability 1
s when-

ever either clause or literal is 0-valued. This feedback
rewards Exclude actions and penalizes Include actions
to coarsen patterns, combating overfitting. Thus, the se-
lected TA states are decreased.

The matrix F II ∈ {0, 1}n×2o contains Type II Feedback
to the TAs, given per Table 2.

• Type II Feedback penalizes Exclude actions to make
the clauses more discriminative, combating false posi-
tives. That is, if the literal is 0-valued and the clause is
1-valued, TA states below N + 1 are increased. Eventu-
ally the clause becomes 0-valued for that particular in-
put, upon inclusion of the 0-valued literal.

The final updating step for training example (x, y) is to clip
the state values to make sure that they stay within value 1 and
2N :

At+1 = clip
(
A∗

t+1, 1, 2N
)
. (6)

For example, both of the clauses in Figure 2 receives Type I
Feedback over several training examples, making them re-
semble the input associated with y = 1.

Let us consider a sample of XOR gate (x1 = 0, x2 = 1) =
1 to visualize the learning process as shown in Fig. 2. There
are n clauses required to learn the XOR pattern and here let
us consider n = 4 per class. Among 4 clauses, the clauses
C1 and C3 votes for the presence y = 1 and C0 and C2 votes
against it. For simplification, let us only consider how C1 and
C3 learns the pattern for the given sample of XOR gate. At
step 1, the clauses has not learnt the pattern for given sample,
which leads to wrong prediction of class thereby triggering
Type I feedback for corresponding literals. From Table 1 for
literal x1, if the clause score is 0 and literal is 0, it receives
Inaction or Penalty for being included with the probability
of s−1

s and 1
s respectively. After several penalty, it changes

1Note that the probability s−1
s

is replaced by 1 when boosting
true positives.



1 1 0

0 0 1

0 1 1

3 x 3 input image

4 positive clauses 4 negative clauses

1

∑
+1

x

y

+10 0 0

0 < x 0 1

y <= 0 1 0

0 < x 1 1

y <= 0 0 0

0 < x 0 0

y <= 0 1 1

0 < x 1 0

y <= 0 0 1

0 < x 0 1

y <= 0 1 0

0 < x 0 1

y <= 0 1 0

0 0

0 < x 1 1

y <= 0 0 0

0 < x 0 0

y <= 0 1 1

00

(a)

1 0 1

0 1 0

0 1 1
3 x 3 input image

4 positive clauses 4 negative clauses

∑

P(Feedback) = (T-1)/(2T) = 0.25

x

y

Type I Feedback

0 < x 1 0
y <= 0 0 1

0 < x 1 1
y <= 0 0 0

0 < x 0 0
y <= 0 1 1

0 < x 0 1

y <= 0 1 0

0 < x 1 0
y <= 0 0 1

0 < x 1 0
y <= 0 0 1

0 < x 1 1

y <= 0 0 0

0 < x 0 0

y <= 0 1 1

Type II Feedback

+10 0 00 0 00

+1

(b)

Figure 3: Example of inference (a) and learning (b) for the Noisy
2D XOR Problem.

its state to exclude action and gets removed from the clause
C1. On the other hand, the literal ¬x1 gets penalty for being
excluded and eventually jumps to include section as shown
in C1 at step 2. Similarly, when literal ¬x2 = 0 and C1 =
0, it receives Inaction or Penalty for being included with the
probability of s−1

s and 1
s respectively. After several penalties,

¬x2 gets excluded and x2 becomes included as shown in step
2. This indeed reaches intended pattern thereby making the
clauses C1 = 1 and C3 = 1, and finally results in ŷ = 1.

Resource allocation ensures that clauses distribute them-
selves across the frequent patterns, rather than missing some
and over-concentrating on others. That is, for any input X ,
the probability of reinforcing a clause gradually drops to zero
as the clause output sum

v =
∑n/2

j=1 C
+
j (X)−

∑n/2
j=1 C

−
j (X) (7)

0 < x 1 0

y <= 0 0 1

1 1 0

0 0 1

0 1 1

3 x 3 input image

4 positive clauses 4 negative clauses

1

∑
+2

x

y

+10 0 0

0 < x 0 1

y <= 0 1 0

0 < x 1 1

y <= 0 0 0

0 < x 0 0

y <= 0 1 1

0 < x 1 0

y <= 0 0 1

0 < x 0 1

y <= 0 1 0

0 0

0 < x 1 1

y <= 0 0 0

0 < x 0 0

y <= 0 1 1

0+1

(a)

5/20/2019 m.html

1/1

3

3

(b)

Figure 4: (a) Goal state for the Noisy 2D XOR Problem. (b) Illus-
tration of image, filter and patches.

approaches a user-configured target T for y = 1 (and −T
for y = 0). If a clause is not reinforced, it does not give
feedback to its Tsetlin automata (TAs), and these are thus left
unchanged. In the extreme, when the voting sum v equals
or exceeds the target T (the TM has successfully recognized
the input X), no clauses are reinforced. They are then free to
learn new patterns, naturally balancing the pattern represen-
tation resources [Granmo, 2018].

Weighted Tsetlin Machine
The learning of weights is based on increasing the weights
of clauses that receive Type Ia feedback (due to true positive
output) and decreasing the weight of clauses that receive Type
II feedback (due to false positive output). The overall ratio-
nale is to determine which clauses are inaccurate and thus
must team up to obtain high accuracy as a team (low weight



clauses), and which clauses are sufficiently accurate to op-
erate more independently (high weight clauses). The weight
updating procedure is summarized in Algorithm 1. Here, wi

is the weight of clause Ci at the nth training round (ignor-
ing polarity to simplify notation). The first step of a training
round is to calculate the clause output. The weight of a clause
is only updated if the clause output Ci is 1 and the clause has
been selected for feedback (Pi = 1). Then the polarity of
the clause and the class label y decide the type of feedback
given. That is, like a regular TM, positive polarity clauses re-
ceive Type Ia feedback if the clause output is a true positive
and Type II feedback if the clause output is a false positive.
For clauses with negative polarity, the feedback types switch
roles. When clauses receive Type Ia or Type II feedback,
their weights are updated accordingly. We use the stochas-
tic searching on the line (SSL) automaton to learn appropri-
ate weights. SSL is an optimization scheme for unknown
stochastic environments pioneered by Oommen [Oommen,
1997]. The goal is to find an unknown location λ∗ within
a search interval [0, 1]. In order to find λ∗, the only available
information for the Learning Mechanism (LM) is the possi-
bly faulty feedback from its attached environment E.
In SSL, the search space λ is discretized into N points,
{0, 1/N, 2/N, ..., (N−1)/N, 1}with N being the discretiza-
tion resolution. During the search, the LM has a location
λ ∈ {0, 1/N, 2/N, ..., (N−1)/N, 1}, and can freely move to
the left or to the right from its current location. The environ-
ment E provides two types of feedback: E = 1 is the envi-
ronment suggestion to increase the value of λ by one step, and
E = 0 is the environment suggestion to decrease the value of
λ by one step. The next location of λ, i.e., λn+1, can thus be
expressed as follows:

λn+1 =

{
λn + 1/N, if En = 1,
λn − 1/N, if En = 0.

(8)

λn+1 =

{
λn, if λn = 1 and En = 1,
λn, if λn = 0 and En = 0.

(9)

Asymptotically, the learning mechanics is able to find a value
arbitrarily close to λ∗ when N → ∞ and n → ∞. In our
case, the search space of clause weights is [0,∞], so we use
resolution N = 1, with no upper bound for λ. Accordingly,
we operate with integer weights. As in algorithm 1, if the
clause output is a true positive, we simply increase the weight
by 1. Conversely, if the clause output is a false positive, we
decrease the weight by 1.
By following the above procedure, the goal is to make low
precision clauses team up by giving them low weights, so that
they together can reach the summation target T . By teaming
up, precision increases due to the resulting ensemble effect.
Clauses with high precision, however, gets a higher weight,
allowing them to operate more independently.
The above weighting scheme has several advantages. First
of all, increment and decrement operations on integers are
computationally less costly than multiplication based updates
of real-valued weights. Additionally, a clause with an inte-
ger weight can be seen as multiple copies of the same clause,
making it more interpretable than real-valued weighting, as
studied in the next section. Additionally, clauses can be

Algorithm 1 Complete WTM learning process.

1: Input: Training data batch (B, x, y) ▷B ≥ 1
2: Initialize: Random initialization of TAs
3: Begin: nth training round
4: for i = 1, ...,m do if pi = 1
5: if (y = 1 and i is odd) or (y = 0 and i is even) then
6: if ci = 1 then
7: wi ← wi + 1
8: for feature k = 1, ..., 2o do
9: if lk = 1 then

10: Type Ia Feedback
11: else:
12: Type Ib Feedback
13: end if
14: end for
15: else:
16: wi ← wi ▷ [No Change]
17: Type Ib Feedback
18: end if
19: else: (y = 1 and i is even) or (y = 0 and i is odd)
20: if ci = 1 then
21: if wi > 0 then
22: wi ← wi − 1
23: end if
24: for feature k = 1, ..., 2o do
25: if lk = 0 then
26: Type II Feedback
27: else:
28: Inaction
29: end if
30: end for
31: else:
32: wi ← wi ▷ [No Change]
33: Inaction
34: end if
35: end if
36: end for

turned completely off by setting their weights to 0 if they do
not contribute positively to the classification task.

Convolutional Tsetlin Machine
Consider a set of images X = {xe|1 ≤ e ≤ E}, where e is
the index of the images. Each image is of size dx × dy and
consists of dz binary layers, illustrated in Figure 4b. A vanilla
TM models such an image with an input vector x = [xk] ∈
{0, 1}dx×dy×dz that contains dx × dy × dz input features.
Accordingly, each clause is composed from dx× dy × dz × 2
literals.
Structure. The CTM (CTM) [Granmo et al., 2019] per-
forms a convolution over the input image x, dividing it into
patches with spatial dimensions dw × dw. That is, the in-
put vector x = [xk] ∈ {0, 1}dx×dy×dz produces B =(⌈

dx−dw

q

⌉
+ 1

)
×
(⌈

dy−dw

q

⌉
+ 1

)
patches, with q being the

step size of the convolution. For instance, Figure 4b illus-
trates B = (6 − 3 + 1) × (6 − 3 + 1) = 16 patches of size
3× 3, assuming step size q = 1.



Each patch b ∈ {1, 2, . . . , B}, in turn, yields an input vec-
tor xb = [xb

k] ∈ {0, 1}dw×dw×dz with a corresponding literal
vector lb = [lbk] ∈ {0, 1}dw×dw×dz×2. The CTM becomes lo-
cation aware by augmenting each patch input vector xb with
the coordinates of xb within x, using threshold-based encod-
ing.

Classification. The CTM is based on the classic TM proce-
dure for classification. However, we now have B input vec-
tors xb per image rather than a single input vector x. The
convolution is performed by evaluating each clause Cj on

each input vector xb, i.e., calculating
∧2o

k=1

[
g(ajk)⇒ lbk

]
,

and then ORing the evaluations per clause:

ŷ = 0 ≤
n−1∑

j=1,3,...

B∨
b=1

[
2o∧
k=1

[
g(ajk)⇒ lbk

]]

−
n∑

j=2,4,...

B∨
b=1

[
2o∧
k=1

[
g(ajk)⇒ lbk

]]
. (10)

Figure 3a provides an example where a 3 × 3 input image
produces four 2 × 2 patches. The CTM has four clauses of
positive polarity and four clauses of negative polarity. Only
one of the clauses of positive polarity matches. This clause
matches the upper left corner of the input image, hence eval-
uating to 1. Accordingly, the net output sum is +1, yielding
output ŷ = 1.

Learning. CTM learning leverages the TM learning proce-
dure, per Eq. (5) and Eq. (6). However, when giving Type Ia
or Type II Feedback to each clause Cj , the CTM does not use
the original input vector x. Instead, it randomly selects one
of the patch input vectors xb that made the clause evaluate to
1:

xb
j = RandomChoice({xb|

2o∧
k=1

[g(ajk)⇒ lbk]

= 1, 1 ≤ b ≤ B.}). (11)

For Type Ib Feedback, on the other hand, CTM follows the
standard updating scheme.

The reason for randomly selecting a patch input vector xb

is to have each clause extract a certain sub-pattern, and the
randomness of the uniform distribution statistically spreads
the clauses for different sub-patterns in the target image.

Figure 3b demonstrates a learning step. Only a sin-
gle clause has recognized the input. Assuming a summa-
tion target (margin) of T = 2 and net clause output sum
+1 the probability of giving each clause feedback becomes
P (Feedback) = (2−1)

2·2 = 0.25. Since the training exam-
ple is y = 1, the positive polarity clauses receives Type I
Feedback with probability 0.25, while the negative polarity
clauses receive Type II feedback again with probability 0.25.
After several such updates, we have a more balanced repre-
sentation of the input patterns in Figure 4a, with two clauses
now recognizing the input.

x1 x2 Output
0 0 0
1 1 0
0 1 1

Table 3: A sub-pattern in “XOR” case.

B Detailed transition of a XOR sub-pattern
given the clause size constraint

Here we detail the convergence of the XOR operator when
only one literal as budget is given, i.e., ∥Ci

j(X)∥ = 1. Specif-
ically, we study the transitions of TAs for the sub-pattern
shown in Table 3. Compared with the analysis in [Jiao et al.,
2023], the changes due to the new constraint are highlighted
in red.

For simplicity, we ignore the class index i in Ci
j because

we study only one class, i.e., the XOR operator. Without loss
of generality, we look at clause C3. C3 has in total 4 TA, i.e.,
TA3

1 with actions “Include x1” or “Exclude x1”, TA3
2 with

actions “Include ¬x1” or “Exclude ¬x1”, TA3
3 with actions

“Include x2” or “Exclude x2”, and TA3
4 with actions “Include

¬x2” or “Exclude ¬x2”. To analyze the convergence of those
four TAs, we perform a quasi-stationary analysis, where we
freeze the behavior of three of them, and then study the tran-
sitions of the remaining one. More specifically, the analysis
is organized as follows:

1. We freeze TA3
1 and TA3

2 respectively at “Exclude” and
“Include”. In this case, the first bit becomes ¬x1. There
are four sub-cases for TA3

3 and TA3
4:

(a) We study the transition of TA3
3 when it has the ac-

tion “Include” as its current action, given different
training samples shown in Table 3 and different ac-
tions of TA3

4 (i.e., when the action of TA3
4 is frozen

at “Include” or “Exclude”).
(b) We study the transition of TA3

3 when it has “Ex-
clude” as its current action, given different training
samples shown in Table 3 and different actions of
TA3

4 (i.e., when the action of TA3
4 is frozen at “In-

clude” or “Exclude”).
(c) We study the transition of TA3

4 when it has “In-
clude” as its current action, given different training
samples shown in Table 3 and different actions of
TA3

3 (i.e., when the action of TA3
3 is frozen at “In-

clude” or “Exclude”).
(d) We study the transition of TA3

4 when it has “Ex-
clude” as its current action, given different training
samples shown in Table 3 and different actions of
TA3

3 (i.e., when the action of TA3
3 is frozen as “In-

clude” or “Exclude”).

2. We freeze TA3
1 and TA3

2 respectively at “Include” and
“Exclude”. In this case, the first bit becomes x1. The
sub-cases for TA3

3 and TA3
4 are identical to the sub-cases

in the previous case.

3. We freeze TA3
1 and TA3

2 at “Exclude” and “Exclude”. In
this case, the first bit is excluded and will not influence



the final output. The sub-cases for TA3
3 and TA3

4 are
identical to the sub-cases in the previous case.

4. We freeze TA3
1 and TA3

2 at “Include” and “Include”. In
this case, we always have C3 = 0 because the clause
contains the contradiction x1 ∧ ¬x1. The sub-cases for
TA3

3 and TA3
4 are identical to the sub-cases in the previ-

ous case.

In the analysis below, we will study each of the four cases,
one by one.

Case 1
In this case, the first bit is in the form of ¬x1 always. We now
analyze the first sub-case, i.e., Sub-case 1 (a). We here study
the transition of TA3

3 when its current action is “Include”.
Depending on different training samples and actions of TA3

4,
we have the following possible transitions. Below, “I” and
“E” mean “Include” and “Exclude”, respectively. For sake
of conciseness, we remove the instances where no transition
happens.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, we have
Type I feedback for
literal x2 = 1, C3 =
¬x1 ∧ x2 ∧ 0 = 0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1, TA3

4=I.
Therefore, we have
Type I feedback for lit-
eral x2 = 1, C3 = 0. R

P

I E
u1

1
s

We now consider Sub-case 1 (b). The literal ¬x1 is still
included, and we study the transition of TA3

3 when its current
action is “Exclude”. The possible transitions are listed below.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type
I, x2 = 1,
C3 = ¬x1 = 1.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

4=E.
Therefore, Type
II, x2 = 0,
C3 = ¬x1 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type
I, x2 = 1,
C3 = ¬x1 ∧ ¬x2 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

4=I.
Therefore, Type
II, x2 = 0,
C3 = ¬x1 ∧ ¬x2 = 1.

R

P

I E

u2 × 1

Now let us move onto the third sub-case in Case 1, i.e.,
Sub-case 1 (c). The literal ¬x1 is still included, and we study
the transition of TA3

4 when its current action is “Include”.
Note that we are now studying TA3

4 that corresponds to ¬x2

rather than x2. Therefore, the literal in Tables 1 and 2 be-
comes ¬x2.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type
I, ¬x2 = 0,
C3 = ¬x1 ∧ ¬x2 = 0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E
u1

1
s

For the Sub-case 1 (d), we study the transition of TA3
4

when it has the current action “Exclude”.
Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type
I, ¬x2 = 0,
C3 = ¬x1 = 1.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0, C3 =
¬x1 ∧ x2 ∧ 0 = 0.

R

P

I E

u1
1
s

So far, we have gone through all sub-cases in Case 1.
Case 2
Case 2 studies the behavior of TA3

3 and TA3
4 when TA3

1 and
TA3

2 select “Include” and “Exclude”, respectively. In this
case, the first bit is in the form of x1 always. There are here
also four sub-cases and we will detail them presently.

We first study TA3
3 with action “Include”, providing the

below transitions.
Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E
u1

1
s

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E
u1

1
s

We then study TA3
3 with action “Exclude”, and transitions

are shown below.



Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E

u1
1
s

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E

u1
1
s

We now study TA3
4 with action “Include” and the transi-

tions are presented below.
Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type
I, ¬x2 = 0,
C3 = x1 ∧ ¬x2 = 0.

R

P

I E
u1

1
s

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0 , C3 = 0. R

P

I E
u1

1
s

We study lastly TA3
4 with action “Exclude”, leading to the

following transitions.
Conditions: x1 = 1,
x2 = 1, y = 0,
TA3

3=E.
Therefore, Type
II, ¬x2 = 0,
C3 = x1 = 1.

R

P

I E

u2 × 1

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E

u1
1
s

Conditions: x1 = 1,
x2 = 1, y = 0,
TA3

3=I.
Therefore, Type II,
¬x2 = 0,
C3 = x1 ∧ x2 = 1.

R

P

I E

u2 × 1

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type
I, ¬x2 = 0,
C3 = x1 ∧ x2 = 0.

R

P

I E

u1
1
s

Case 3
Now we move onto Case 3, where TA3

1 and TA3
2 both select

“Exclude”. We study the behavior of TA3
3 and TA3

4 for dif-
ferent sub-cases. In this case, the first bit x1 does not play
any role for the output.

We first examine TA3
3 with action “Include”, providing the

transitions below.

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type I,
x2 = 1, C3 = x2 = 1. R

P

I E

u1
s−1
s

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E
u1

1
s

We then study TA3
3 with action “Exclude”, transitions

shown below. In this situation, if TA3
4 is also excluded, C3 is

“empty” since all its associated TA select action “Exclude”.
To make the training proceed, according to the training rule
of TM, we assign C3 = 1 in this situation.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type I,
x2 = 1, C3 = 1. R

P

I E

u1
s−1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

4=E.
Therefore, Type II,
x2 = 0, C3 = 1. R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type
I, x2 = 1,
C3 = ¬x2 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

4=I.
Therefore, Type
II, x2 = 0,
C3 = ¬x2 = 1.

R

P

I E

u2 × 1

We thirdly study TA3
4 with action “Include”, covering the

transitions shown below.
Condition: x1 = 0,
x2 = 1, y = 1
TA3

3=E.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E
u1

1
s

Lastly, we study TA3
4 with action “Exclude”, transitions

shown below. Similarly, in this situation, when TA3
3 is also

excluded, C3 becomes “empty” again, as all its associated
TAs select action “Exclude”. Following the training rule of



TM, we assign C3 = 1.

Conditions: x1 = 1,
x2 = 1, y = 0,
TA3

3=E.
Therefore, Type II,
¬x2 = 0, C3 = 1. R

P

I E

u2 × 1

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type I,
¬x2 = 0, C3 = 1. R

P

I E

u1
1
s

Conditions: x1 = 1,
x2 = 1, y = 0,
TA3

3=I.
Therefore, Type II,
¬x2 = 0, C3 = 1. R

P

I E

u2 × 1

Conditions: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0, C3 = 1. R

P

I E

u1
1
s

Case 4
Now, we study Case 4, where ¬x1 and x1 both select “In-
clude”. For this reason, in this case, we always have C3 = 0.
We study firstly TA3

3 with action “Include” and the transitions
are shown below.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E
u1

1
s

We secondly study TA3
3 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=E.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=I.
Therefore, Type I,
x2 = 1, C3 = 0. R

P

I E

u1
1
s

Now, we study TA3
4 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E
u1

1
s

We lastly study TA3
4 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=E.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

3=I.
Therefore, Type I,
¬x2 = 0, C3 = 0. R

P

I E

u1
1
s

Based on the above analyses, we can now summarize the
transitions of TA3

3 and TA3
4, given different configurations

of TA3
1 and TA3

2 in Case 1 – Case 4 (i.e., given four different
combinations of x1 and ¬x1). The arrow shown below means
the direction of transitions.

Scenario 1: Study TA3
3 = I and TA3

4 = I.
Case 1: we can see that
TA3

3→ E
TA3

4→ E

Case 2: we can see that
TA3

3→ E
TA3

4→ E

Case 3: we can see that
TA3

3→ E
TA3

4→ E

Case 4: we can see that
TA3

3→ E
TA3

4→ E
From the facts presented above, it is confirmed that regard-

less of the state of TA3
1 and TA3

2, if TA3
3=I and TA3

4=I, they
(TA3

3 and TA3
4) will move towards the opposite half of the

state space (i.e., towards “Exclude” ), away from the current
state. So, the state with TA3

3=I and TA3
4=I is not absorbing.

Scenario 2: Study TA3
3 = I and TA3

4= E.
Case 1: we can see that
TA3

3→ E
TA3

4→ E

Case 2: we can see that
TA3

3→ E
TA3

4→ I, E

Case 3: we can see that
TA3

3→ I
TA3

4→ I, E

Case 4: we can see that
TA3

3→ E
TA3

4→ E
In this scenario, the starting point of TA3

3 is “Include” and
that of TA3

4 is “Exclude”. Clearly, actions “Include” and “Ex-
clude” for TA3

3 and TA3
4 are not absorbing because none of

the cases will make TA3
3 and TA3

4 only move towards “In-
clude” and “Exclude”.

Scenario 3: Study TA3
3 = E and TA3

4 = I.



Case 1: we can see that
TA3

3→ I, E
TA3

4→ E

Case 2: we can see that
TA3

3→ E
TA3

4→ E

Case 3: we can see that
TA3

3→ I, E
TA3

4→ E

Case 4: we can see that
TA3

3→ E
TA3

4→ E
From the transitions of TA3

3 and TA3
4 in Scenario 3, we can

conclude that the state with TA3
3 = E and TA3

4 = I is not ab-
sorbing.

Scenario 4: Study TA3
3 = E and TA3

4 = E.
Case 1: we can see that
TA3

3→ I
TA3

4→ E

Case 2: we can see that
TA3

3→ E
TA3

4→ I, E

Case 3: we can see that
TA3

3→I
TA3

4→I, E

Case 4: we can see that
TA3

3→ E
TA3

4→ E
From the transitions of TA3

3 and TA3
4 in Scenario 4, we can

see that the state with TA3
3 = E and TA3

4 = E seems absorb-
ing in Case 4, i.e., when TA3

1 and TA3
2 have both actions as

Include. However, the condition in Case 4, i.e., TA3
1=I and

TA3
2=I, is transient. For this reason, state TA3

3 = E and TA3
4

= E becomes not absorbing.
From the above analysis, we can conclude that when we

freeze TA3
1 and TA3

2 with certain actions, there is no absorb-
ing case.

So far, we have studied the behavior of TA3
3 and TA3

4

when the transitions of TA3
1 and TA3

2 are frozen. In what
follows, following the same principle above, we freeze the
actions of TA3

3 and TA3
4 and study the transitions of TA3

1

and TA3
2.

Case 1
Here TA3

3 is frozen as “Exclude” and TA3
4 is “Include”. In

this situation, the outputs of TA3
3 and TA3

4 give ¬x2.
We firstly study TA3

1 with action “Include”.
Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = x1 ∧ ¬x2 = 0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = 0.

R

P

I E
u1

1
s

We now study TA3
1 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = ¬x2 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

2=E.
Therefore, Type II,
x1 = 0,
C3 = ¬x2 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = ¬x1 ∧ ¬x2 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

2=I.
Therefore, Type II,
x1 = 0,
C3 = ¬x1 ∧ ¬x2 = 1.

R

P

I E

u2 × 1

We thirdly study TA3
2 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 1,
C3 = ¬x1 ∧ ¬x2 = 0

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = 0

R

P

I E
u1

1
s

We finally study TA3
2 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 1,
C3 = ¬x2 = 0

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = x1 ∧ ¬x2 = 0.

R

P

I E

u1
1
s

Case 2
Here TA3

3 is frozen as “Include” and TA3
4 is as “Exclude”. In

this situation, the outputs of TA3
3 and TA3

4 give x2.

We now study TA3
1 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = x1 ∧ x2 = 0.

R

P

I E
u1

1
s



Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = ¬x1∧x1∧x2 =
0.

R

P

I E
u1

1
s

We now study TA3
1 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = x1 = 1.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = ¬x1 ∧ x2 ∧ 0 =
0.

R

P

I E

u1
1
s

We now study TA3
2 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 1,
C3 = ¬x1 ∧ x2 ∧ 0 =
0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = 0.

R

P

I E
u1

1
s

We now study TA3
2 with action “Exclude”.

Condition: x1 = 1,
x2 = 1, y = 0,
TA3

1=E.
Therefore, Type II,
¬x1 = 0,
C3 = x2 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E
Therefore, Type I,
¬x1 = 1,
C3 = x2 = 1.

R

P

I E
u1

s−1
s

Condition: x1 = 1,
x2 = 1, y = 0,
TA3

1=I.
Therefore, Type II,
¬x1 = 0,
C3 = x1 ∧ x2 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = x1 ∧ x2 = 0.

R

P

I E

u1
1
s

Case 3
Here TA3

3 is frozen as “Exclude” and TA3
4 is as “Exclude”.

In this case, the second bit x2 does not play any role for the
output.

We now study TA3
1 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = x1 = 0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = x1 ∧ ¬x1 = 0.

R

P

I E
u1

1
s

We now study TA3
1 with action “Exclude”.

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

2=E.
Therefore, Type II,
x1 = 0,
C3 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = 1.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 0, y = 0,
TA3

2=I.
Therefore, Type II,
x1 = 0,
C3 = ¬x1 = 1.

R

P

I E

u2 × 1

Condition; x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = ¬x1 = 1.

R

P

I E

u1
1
s

We now study TA3
2 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 1,
C3 = ¬x1 = 1.

R

P

I E

u1
s−1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = 0. R

P

I E
u1

1
s

We now study TA3
2 with action “Exclude”.



Condition: x1 = 1,
x2 = 1, y = 0,
TA3

1=E.
Therefore, Type II,
¬x1 = 0,
C3 = x1 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 0,
C3 = x1 = 1.

R

P

I E

u1
1
s

Condition: x1 = 1,
x2 = 1, y = 0,
TA3

1=I.
Therefore, Type II,
¬x1 = 0,
C3 = x1 = 1.

R

P

I E

u2 × 1

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 0,
C3 = x1 = 1.

R

P

I E

u1
1
s

Case 4
Here both TA3

3 and TA3
4 are frozen as “Include”. In this situ-

ation, the output of the clause is always 0.
We now study TA3

1 with action “Include”.
Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = 0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=I.
Therefore, Type I,
x1 = 0,
C3 = 0

R

P

I E
u1

1
s

We now study TA3
1 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

2=E.
Therefore, Type I,
x1 = 0,
C3 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 0,
TA3

2=I.
Therefore, Type II,
x1 = 0,
C3 = 0.

R

P

I E

u1
1
s

We now study TA3
2 with action “Include”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 1,
C3 = 0.

R

P

I E
u1

1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = 0.

R

P

I E
u1

1
s

We now study TA3
2 with action “Exclude”.

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=E.
Therefore, Type I,
¬x1 = 1,
C3 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0,
x2 = 1, y = 1,
TA3

1=I.
Therefore, Type I,
¬x1 = 1,
C3 = 0.

R

P

I E

u1
1
s

Based on the analysis performed above, we can show the
directions of transitions for TA3

1 and TA3
2 given different con-

figurations of TA3
3 and TA3

4.
Scenario 1: Study TA3

1 = I and TA3
2 = E.

Case 1: we can see that
TA3

1→ E
TA3

2→ E

Case 2: we can see that
TA3

1→ E
TA3

2→ I, E
Case 3: we can see that
TA3

1→ E
TA3

2→ I, E

Case 4: we can see that
TA3

1→ E
TA3

2→ E

Scenario 2: Study TA3
1 = I and TA3

2 = I.
Case 1: we can see that
TA3

1→ E
TA3

2→ E

Case 2: we can see that
TA3

1→ E
TA3

2→ E
Case 3: we can see that
TA3

1→ E
TA3

2→ E

Case 4: we can see that
TA3

1→ E
TA3

2→ E

Scenario 3: Study TA3
1 = E and TA3

2 = I.
Case 1: we can see that
TA3

1→ I, E
TA3

2→ E

Case 2: we can see that
TA3

1→ E
TA3

2→ E
Case 3: we can see that
TA3

1→ I
TA3

2→ I

Case 4: we can see that
TA3

1→ E
TA3

2→ E

Scenario 4: Study TA3
1 = E and TA3

2 = E.
Case 1: we can see that
TA3

1→ I, E
TA3

2→ E

Case 2: we can see that
TA3

1→ E
TA3

2→ I
Case 3: we can see that
TA3

1→ E
TA3

2→ I, E

Case 4: we can see that
TA3

1→ E
TA3

2→ E
According to the above transitions, we can conclude that

there is no absorbing state.
Based on the above analysis, for the sub-pattern described

in Table 3, given ∥Ci
j(X)∥ = 1, there is no absorbing state,



indicating that the CSC-TM cannot converge to the intended
sub-pattern. The same applies to the other sub-pattern in the
XOR operator, i.e., [x1 = 1, x2 = 0]. Therefore, we can
conclude that given ∥Ci

j(X)∥ = 1, the XOR operator cannot
be learnt by CSC-TM.

References
[Granmo et al., 2019] Ole-Christoffer Granmo, Sondre

Glimsdal, Lei Jiao, Morten Goodwin, Christian W.
Omlin, and Geir Thore Berge. The Convolutional Tsetlin
Machine. arXiv preprint arXiv:1905.09688, 2019.

[Granmo, 2018] Ole-Christoffer Granmo. The Tsetlin Ma-
chine - A Game Theoretic Bandit Driven Approach to Op-
timal Pattern Recognition with Propositional Logic. arXiv
preprint arXiv:1804.01508, 2018.

[Jiao et al., 2023] Lei Jiao, Xuan Zhang, Ole-Christoffer
Granmo, and K. Darshana Abeyrathna. On the Conver-
gence of Tsetlin Machines for the XOR operator. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 45(5):6072–6085, 2023.

[Oommen, 1997] B.J. Oommen. Stochastic searching on the
line and its applications to parameter learning in nonlinear
optimization. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 27(4):733–739, 1997.


	Tsetlin Machine
	Weighted Tsetlin Machine
	Convolutional Tsetlin Machine

	Detailed transition of a XOR sub-pattern given the clause size constraint

